Skip to content

problem in denoising and generated image #36

@Ariz-Mohammadi

Description

@Ariz-Mohammadi

Hello, explainable AI,
First of all, thank you so much for the videos and codes you shared. I have learned lots of things from you.
I tried to generate new images (unconditional)using the Mammography images dataset(3100 images). I trained the VQVAE for 100 epochs, and the results were good, as you can see below.
current_autoencoder_sample_151

Then, I trained the diffusion part. I started with 100 epochs, and when I ran the sample_ddpm_vqvae.py the output image was like this
x0_0
I thought maybe the number of epochs in train_ddpm_vqvae.py was not enough, and it was still learning. So I changed to 500, but I got the same result. I thought there might be another problem. Below is the generated (denoised) image for 500 epochs.
x0_new
As you can see, nothing has changed.
"I would like to share my configuration here and would greatly appreciate it if you could take a look and provide your comments on the issue I'm facing. Do you think increasing the learning rate might help?"

dataset_config:
im_path: '/cta/users/undergrad2/StableDiffusion-PyTorch/data/Breast/Breast-img'
im_channels : 3
im_size : 256
name: 'Breast'

diffusion_params:
num_timesteps : 1000
beta_start: 0.00085
beta_end: 0.012

ldm_params:
down_channels: [ 256, 384, 512, 768 ]
mid_channels: [ 768, 512 ]
down_sample: [ True, True, True ]
attn_down : [True, True, True]
time_emb_dim: 512
norm_channels: 32
num_heads: 16
conv_out_channels : 128
num_down_layers : 2
num_mid_layers : 2
num_up_layers : 2
condition_config:
condition_types: None #[ 'classes' ]
class_condition_config:
cond_drop_prob : 0.1
class_condition_l : 11
text_condition_config:
text_embed_model: 'clip'
train_text_embed_model: False
text_embed_dim: 512
cond_drop_prob: 0.1
image_condition_config:
image_condition_input_channels: 18
image_condition_output_channels: 3
image_condition_h : 512
image_condition_w : 512
cond_drop_prob: 0.1

autoencoder_params:
z_channels: 3
codebook_size : 8192
down_channels : [64, 128, 256, 256]
mid_channels : [256, 256]
down_sample : [True, True, True]
attn_down : [False, False, False]
norm_channels: 32
num_heads: 4
num_down_layers : 2
num_mid_layers : 2
num_up_layers : 2
num_headblocks : 1

train_params:
seed : 1111
task_name: '/cta/users/undergrad2/StableDiffusion-PyTorch/Breast_training'
ldm_batch_size: 16
autoencoder_batch_size: 8
disc_start: 10
disc_weight: 0.5
codebook_weight: 1
commitment_beta: 0.2
perceptual_weight: 1
kl_weight: 0.000005
ldm_epochs: 500 # 100 it was 100 at first but didnt work
autoencoder_epochs: 100
num_samples: 1
num_grid_rows: 1
ldm_lr: 0.000005
autoencoder_lr: 0.00001
autoencoder_acc_steps: 4
autoencoder_img_save_steps: 256
use_latents: True
save_latents : False #in vqvae if u set it true, in vqvae_latents it will save latents (which are for batches) also u can generate using code
cf_guidance_scale : 1.0
load_ckpt: True

vqvae_latent_dir_name: '/cta/users/undergrad2/StableDiffusion-PyTorch/Breast_training/vqvae_latents'
vae_latent_dir_name: '/cta/users/undergrad2/StableDiffusion-PyTorch/Breast_training/vae_latents'
vqvae_autoencoder_ckpt_name: '/cta/users/undergrad2/StableDiffusion-PyTorch/Breast_training/vqvae_autoencoder_ckpt.pth'
vae_autoencoder_ckpt_name: '/cta/users/undergrad2/StableDiffusion-PyTorch/Breast_training/vae_autoencoder_ckpt.pth'
vqvae_discriminator_ckpt_name: '/cta/users/undergrad2/StableDiffusion-PyTorch/Breast_training/vqvae_discriminator_ckpt.pth'
vae_discriminator_ckpt_name: '/cta/users/undergrad2/StableDiffusion-PyTorch/Breast_training/vae_discriminator_ckpt.pth'
ldm_ckpt_name: '/cta/users/undergrad2/StableDiffusion-PyTorch/Breast_training/ddpm_ckpt_epoch_495.pth'

Thanks a million!

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions