Skip to content

MooreThreads/torchada

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

logo

torchada

Adapter package for torch_musa to act exactly like PyTorch CUDA

torchada provides a unified interface that works transparently on both Moore Threads GPUs (MUSA) and NVIDIA GPUs (CUDA). Write your code once using standard PyTorch CUDA APIs, and it will run on MUSA hardware without any changes.

Features

  • Zero Code Changes: Just import torchada once, then use standard torch.cuda.* APIs
  • Automatic Platform Detection: Detects whether you're running on CUDA or MUSA
  • Transparent Device Mapping: tensor.cuda() and tensor.to("cuda") work on MUSA
  • Extension Building: Standard torch.utils.cpp_extension works on MUSA after importing torchada
  • Source Code Porting: Automatic CUDA → MUSA symbol mapping for C++/CUDA extensions
  • Distributed Training: torch.distributed with nccl backend automatically uses mccl on MUSA
  • Mixed Precision: torch.cuda.amp autocast and GradScaler work transparently
  • CUDA Graphs: torch.cuda.CUDAGraph maps to MUSAGraph on MUSA
  • Inductor Support: torch._inductor autotune uses MUSA_VISIBLE_DEVICES on MUSA

Installation

pip install torchada

# Or install from source
git clone https://github.com/MooreThreads/torchada.git
cd torchada
pip install -e .

Quick Start

Basic Usage

import torchada  # Import once to apply patches - that's it!
import torch

# Platform detection (sglang-style)
def _is_cuda():
    return torch.version.cuda is not None

def _is_musa():
    return hasattr(torch.version, 'musa') and torch.version.musa is not None

# Check for GPU availability (works on both CUDA and MUSA)
if _is_cuda() or _is_musa():
    # Use standard torch.cuda APIs - they work transparently on MUSA:
    device = torch.device("cuda")  # Creates musa device on MUSA platform
    tensor = torch.randn(10, 10).cuda()  # Moves to MUSA on MUSA platform
    model = MyModel().cuda()

    # All torch.cuda.* APIs work transparently
    print(f"Device count: {torch.cuda.device_count()}")
    print(f"Device name: {torch.cuda.get_device_name()}")
    torch.cuda.synchronize()

Building C++ Extensions

# setup.py - Use standard torch imports!
import torchada  # Import first to apply patches
from setuptools import setup
from torch.utils.cpp_extension import CUDAExtension, BuildExtension, CUDA_HOME

print(f"Building with CUDA/MUSA home: {CUDA_HOME}")

ext_modules = [
    CUDAExtension(
        name="my_extension",
        sources=[
            "my_extension.cpp",
            "my_extension_kernel.cu",
        ],
        extra_compile_args={
            "cxx": ["-O3"],
            "nvcc": ["-O3"],  # Automatically mapped to mcc on MUSA
        },
    ),
]

setup(
    name="my_package",
    ext_modules=ext_modules,
    cmdclass={"build_ext": BuildExtension.with_options(use_ninja=True)},
)

JIT Compilation

import torchada  # Import first to apply patches
from torch.utils.cpp_extension import load

# Load extension at runtime (works on both CUDA and MUSA)
my_extension = load(
    name="my_extension",
    sources=["my_extension.cpp", "my_extension_kernel.cu"],
    verbose=True,
)

Mixed Precision Training

import torchada  # Import first to apply patches
import torch

model = MyModel().cuda()
optimizer = torch.optim.Adam(model.parameters())
scaler = torch.cuda.amp.GradScaler()

for data, target in dataloader:
    data, target = data.cuda(), target.cuda()

    with torch.cuda.amp.autocast():
        output = model(data)
        loss = criterion(output, target)

    scaler.scale(loss).backward()
    scaler.step(optimizer)
    scaler.update()
    optimizer.zero_grad()

Distributed Training

import torchada  # Import first to apply patches
import torch.distributed as dist

# Use 'nccl' backend as usual - torchada maps it to 'mccl' on MUSA
dist.init_process_group(backend='nccl')

CUDA Graphs

import torchada  # Import first to apply patches
import torch

# Use standard torch.cuda.CUDAGraph - works on MUSA too
g = torch.cuda.CUDAGraph()
with torch.cuda.graph(g):
    y = model(x)

Platform Detection

torchada automatically detects the platform:

import torchada
from torchada import detect_platform, Platform

platform = detect_platform()
if platform == Platform.MUSA:
    print("Running on Moore Threads GPU")
elif platform == Platform.CUDA:
    print("Running on NVIDIA GPU")

# Or use torch.version-based detection (sglang-style)
def _is_musa():
    return hasattr(torch.version, 'musa') and torch.version.musa is not None

if _is_musa():
    print("MUSA platform detected")

What Gets Patched

After import torchada, the following standard PyTorch APIs work on MUSA:

Standard API Description
torch.cuda.* All APIs redirected to torch.musa
torch.cuda.amp.* autocast, GradScaler
torch.cuda.CUDAGraph Maps to MUSAGraph
torch.cuda.nccl Maps to torch.musa.mccl
torch.cuda.nvtx No-op stub (MUSA doesn't have nvtx)
torch.cuda._lazy_call Patched for lazy initialization
torch.distributed (backend='nccl') Automatically uses MCCL
torch.device("cuda") Creates MUSA device on MUSA platform
tensor.cuda() Moves to MUSA device
tensor.is_cuda Returns True for MUSA tensors
model.cuda() Moves model to MUSA device
torch.amp.autocast(device_type='cuda') Uses 'musa' device type
torch.utils.cpp_extension.* CUDAExtension, BuildExtension, CUDA_HOME
torch._inductor.autotune_process Uses MUSA_VISIBLE_DEVICES

API Reference

torchada

Function Description
detect_platform() Returns the detected platform (CUDA, MUSA, or CPU)
is_musa_platform() Check if running on MUSA
is_cuda_platform() Check if running on CUDA
is_cpu_platform() Check if running on CPU only
get_device_name() Get device name string ("cuda", "musa", or "cpu")
get_platform() Alias for detect_platform()
get_backend() Get the underlying torch device module
is_patched() Check if patches have been applied
get_version() Get torchada version string
is_gpu_device(device) Check if device is CUDA or MUSA (see below)
is_cuda_like_device(device) Alias for is_gpu_device()
CUDA_HOME Path to CUDA/MUSA installation

torch.cuda (after importing torchada)

All standard torch.cuda APIs work, including:

  • device_count(), current_device(), set_device(), get_device_name()
  • memory_allocated(), memory_reserved(), empty_cache(), reset_peak_memory_stats()
  • synchronize(), Stream, Event, CUDAGraph
  • amp.autocast(), amp.GradScaler()
  • _lazy_call(), _lazy_init()

Note: torch.cuda.is_available() is intentionally NOT redirected. It returns False on MUSA to allow proper platform detection. Use hasattr(torch.version, 'musa') and torch.version.musa is not None or torch.musa.is_available() instead.

torch.utils.cpp_extension (after importing torchada)

Symbol Description
CUDAExtension Creates CUDA or MUSA extension based on platform
CppExtension Creates C++ extension (no GPU code)
BuildExtension Build command for extensions
CUDA_HOME Path to CUDA/MUSA installation
load() JIT compile and load extension

Symbol Mapping

torchada automatically maps CUDA symbols to MUSA equivalents when building extensions:

CUDA MUSA
cudaMalloc musaMalloc
cudaMemcpy musaMemcpy
cudaStream_t musaStream_t
cublasHandle_t mublasHandle_t
curandState murandState
at::cuda at::musa
c10::cuda c10::musa
cutlass::* mutlass::*
#include <cuda/*> #include <musa/*>
... ...

See src/torchada/_mapping.py for the complete mapping table (380+ mappings).

Note: Many CUDA constructs like atomic operations (atomicAdd, atomicCAS), shuffle intrinsics (__shfl_sync), and half-precision math (__float2half) are identical in MUSA and don't require mapping.

Known Limitations

Device Type String Comparisons

On MUSA platform, torch.device("cuda") is translated to a device with type "musa", not "cuda". This means direct string comparisons like device.type == "cuda" will fail.

Problem:

device = torch.device("cuda:0")  # On MUSA, this becomes musa:0
if device.type == "cuda":  # Returns False on MUSA!
    ...

Solution: Use torchada.is_gpu_device() for portable code:

import torchada

# Works on both CUDA and MUSA platforms
if torchada.is_gpu_device(device):
    ...

# Also works with tensors
if torchada.is_gpu_device(tensor):
    ...

This is a fundamental limitation because device.type is a C-level property that cannot be patched from Python. Downstream projects that check device.type == "cuda" need to be patched to use torchada.is_gpu_device() or check for both types: device.type in ("cuda", "musa").

Real-World Integrations

torchada has been successfully integrated into several popular PyTorch-based projects. Below are examples demonstrating the typical integration patterns.

Integrated Projects

Project Category PR Status
ComfyUI Image/Video Generation #11618 Open
LightLLM LLM Inference #1162 ✅ Merged
Xinference Model Serving #4425 ✅ Merged
LightX2V Image/Video Generation #678 ✅ Merged

Integration Patterns

Pattern 1: Early Import with Platform Detection

The most common pattern is to import torchada early in the application lifecycle:

# In __init__.py or main entry point
from your_app.device_utils import is_musa

if is_musa():
    import torchada  # noqa: F401

# Platform detection function
def is_musa():
    import torch
    return hasattr(torch.version, "musa") and torch.version.musa is not None

This pattern is used by LightLLM and LightX2V.

Pattern 2: Add to Dependencies

Add torchada to your project's dependencies:

# pyproject.toml
dependencies = [
    "torchada>=0.1.11",
]

# Or requirements.txt
torchada>=0.1.11

Pattern 3: Device Availability Check

Create a device availability function that checks for MUSA:

def is_musa_available() -> bool:
    try:
        import torch
        import torch_musa  # noqa: F401
        import torchada  # noqa: F401
        return torch.musa.is_available()
    except ImportError:
        return False

def get_available_device():
    if torch.cuda.is_available():
        return "cuda"
    elif is_musa_available():
        return "musa"
    return "cpu"

This pattern is used by Xinference.

Pattern 4: Platform-Specific Feature Flags

Enable features based on platform capabilities:

import torchada

musa_available = hasattr(torch, "musa") and torch.musa.is_available()

def is_musa():
    return musa_available

# Enable NVIDIA-like optimizations on MUSA
if is_nvidia() or is_musa():
    ENABLE_PYTORCH_ATTENTION = True
    NUM_STREAMS = 2  # Async weight offloading
    MAX_PINNED_MEMORY = get_total_memory(torch.device("cpu")) * 0.9

This pattern is used by ComfyUI.

Pattern 5: Platform Device Classes

For projects with a device abstraction layer:

from your_platform.base.nvidia import CudaDevice
from your_platform.registry import PLATFORM_DEVICE_REGISTER

@PLATFORM_DEVICE_REGISTER("musa")
class MusaDevice(CudaDevice):
    name = "cuda"  # Use CUDA APIs (redirected by torchada)

    @staticmethod
    def is_available() -> bool:
        try:
            import torch
            import torchada  # noqa: F401
            return hasattr(torch, "musa") and torch.musa.is_available()
        except ImportError:
            return False

This pattern is used by LightX2V.

Common Integration Steps

  1. Add dependency: Add torchada>=0.1.11 to your project dependencies

  2. Import early: Import torchada before using any torch.cuda APIs

    import torchada  # Apply patches
    import torch
  3. Add platform detection: Create is_musa() function for platform-specific code

    def is_musa():
        return hasattr(torch.version, "musa") and torch.version.musa is not None
  4. Update feature flags: Include MUSA in capability checks

    if is_nvidia() or is_musa():
        # Enable GPU-specific features
  5. Handle device type checks: Use torchada.is_gpu_device() or check both types

    # Instead of: device.type == "cuda"
    # Use: device.type in ("cuda", "musa")
    # Or: torchada.is_gpu_device(device)

Architecture

torchada uses a decorator-based patch registration system:

from torchada._patch import patch_function, requires_import

@patch_function  # Registers for automatic application
@requires_import('torch_musa')  # Guards against missing dependencies
def _patch_my_feature():
    # Patching logic here
    pass

All registered patches are applied automatically when you import torchada.

License

MIT License

About

Adapter package for torch_musa to act exactly like PyTorch CUDA

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published