A privacy-preserving system that enables hospitals to collaboratively train diabetes prediction models without sharing patient data.
- 🛡️ Privacy-first: Data never leaves local hospitals
- 🤝 Collaborative: Multiple institutions improve model together
- 🏥 Clinical UI: Doctor-friendly dashboard with explanations
- ⚡ Fast predictions: <500ms inference via ONNX runtime
- Python 3.9+
- Node.js 18+
# Clone repo
git clone https://github.com/ManNjoro/federated_learning.git
cd federated_learning
# Set up Python
python -m venv venv
source venv/bin/activate # Linux/MacOS
# venv\Scripts\activate # Windows
pip install -r requirements.txt
# Set up frontend
cd frontend
npm install
# Start backend (Flask + Flower)
cd backend
python flower.py
# In new terminal - start frontend
cd frontend
npm run devAccess: http://localhost:5173 # Your port could be different
- Upload anonymized patient data through the admin interface
- Participate in federated training rounds
- Monitor local model performance
- Enter patient symptoms through the dashboard
- View real-time diabetes risk predictions
- See explainable AI insights
MIT License - See LICENSE for details.
For questions or collaborations, please open an issue or contact [elijohnmwoho@gmail.com].


