English | 中文
FastAPI + Vite/Vue wrapper around the DeepSeek-OCR model for quick local testing. 🎯
Showcase: Mathematical Formula Recognition

Showcase: Table Data Processing

- 📄 PDF & 🖼️ image upload, with automatic PDF page splitting.
- ⏳ Progress visualization during uploads/inference so you know it’s working.
- 🗺️ Bounding-box overlay for layout/annotation visualization.
- 📑 Annotation detail view for extracted labels/regions.
- 📜 History management: View and manage past OCR results.
- 🧩 Modular UI: Specialized components for Upload, Prompt, Mode, and Actions.
- 📊 Enhanced Visualization: Visual preview, layout details, and page text inspection.
- 📝 Logs & Workflow: Real-time logs and workflow step tracking.
Screenshots:
- Conda env:
ds-ocr - Python 3.10.19 (conda-forge)
- PyTorch 2.6.0+cu118 (CUDA)
- GPU: NVIDIA GeForce RTX 3090
# 1) create / activate
conda create -n ds-ocr python=3.10 -y
conda activate ds-ocr
# 2) backend deps (install torch CUDA build first if needed)
cd web_project/backend
pip install --upgrade pip
# offline / matching CUDA build:
# pip install --no-index --find-links ../../wheels torch torchvision
pip install -r requirements.txt
# 3) frontend deps
cd ../frontend
npm install
# 4) run dev (from repo root)
cd ../../
./start.sh./start.sh starts FastAPI on localhost:8000 and Vite dev server on localhost:5173. 🌐
# backend
cd web_project/backend
uvicorn app:app --host 0.0.0.0 --port 8000
# frontend
cd web_project/frontend
npm run devOCR_BACKEND_PORT: backend port (default 8000)DEEPSEEK_OCR_MODEL_PATH: model weights path override (defaultocr_project/model)DEEPSEEK_ATTN_IMPL: attention impl, e.g.flash_attention_2DEEPSEEK_ALLOWED_ORIGINS: CORS allowlist, comma-separatedDEEPSEEK_MAX_IMAGE_MB: upload size limit in MB (default 15)

