Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
72 changes: 43 additions & 29 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,6 +1,16 @@
# Machine-Learning
Examples and experiments around ML for upcoming Coding Train videos and ITP course.

# Resource attributes

Since resources across the internet vary in terms of their pre-requisites and general accessibility, it is useful to
give attributes to them so that it is easy to understand where a resource fits into the wider machine learning scope. Below is a few suggested attributes (please extend):

- :rainbow: = creative
- :bowtie: = beginner
- :sweat_smile: = intermediate, some pre-requisites
- :godmode: = advanced, many pre-requisites

# Table of Contents
<!-- MarkdownTOC depth=4 -->
- [Articles & Posts](#articles--posts)
Expand All @@ -14,53 +24,57 @@ Examples and experiments around ML for upcoming Coding Train videos and ITP cour

<!-- /MarkdownTOC -->
## Articles & Posts
1. [A Return to Machine Learning](https://medium.com/@kcimc/a-return-to-machine-learning-2de3728558eb#.vlqnbo9yg)
1. [A Visual Introduction to Machine Learning](http://www.r2d3.us/visual-intro-to-machine-learning-part-1/)
1. [Deep Reinforcement Learning: Pong from Pixels](http://karpathy.github.io/2016/05/31/rl/)
1. [Inside Libratus, the Poker AI That Out-Bluffed the Best Humans](https://www.wired.com/2017/02/libratus/?imm_mid=0ed017&cmp=em-data-na-na-newsltr_ai_20170206)
1. [Machine Learning in Javascript: Introduction](http://burakkanber.com/blog/machine-learning-in-other-languages-introduction/)
1. [Realtime control of sequence generation with character based Long Short Term Memory Recurrent Neural Networks](http://www.iggi.org.uk/assets/IGGI-2016-Memo-A.pdf)
1. [Why is machine learning 'hard'?](http://ai.stanford.edu/~zayd/why-is-machine-learning-hard.html)
1. [A Return to Machine Learning](https://medium.com/@kcimc/a-return-to-machine-learning-2de3728558eb#.vlqnbo9yg) :rainbow: :bowtie:
1. [A Visual Introduction to Machine Learning](http://www.r2d3.us/visual-intro-to-machine-learning-part-1/) :rainbow: :bowtie:
1. [Machine Learning is Fun!](https://medium.com/@ageitgey/machine-learning-is-fun-80ea3ec3c471) :bowtie:
1. [Deep Reinforcement Learning: Pong from Pixels](http://karpathy.github.io/2016/05/31/rl/) :rainbow:
1. [Inside Libratus, the Poker AI That Out-Bluffed the Best Humans](https://www.wired.com/2017/02/libratus/? imm_mid=0ed017&cmp=em-data-na-na-newsltr_ai_20170206) :bowtie:
1. [Machine Learning in Javascript: Introduction](http://burakkanber.com/blog/machine-learning-in-other-languages-introduction/) :bowtie:
1. [Realtime control of sequence generation with character based Long Short Term Memory Recurrent Neural Networks](http://www.iggi.org.uk/assets/IGGI-2016-Memo-A.pdf) :sweat_smile:
1. [Why is machine learning 'hard'?](http://ai.stanford.edu/~zayd/why-is-machine-learning-hard.html) :bowtie:
1. [Unreasonable effectiveness of RNNs](http://karpathy.github.io/2015/05/21/rnn-effectiveness/) :sweat_smile:

## Courses
1. [The Neural Aesthetic @ SchoolOfMa, Summer 2016](http://ml4a.github.io/classes/neural-aesthetic/)
1. [The Neural Aesthetic @ SchoolOfMa, Summer 2016](http://ml4a.github.io/classes/neural-aesthetic/) :rainbow: :bowtie:

## Examples
1. [A Deep Q Reinforcement Learning Demo](http://projects.rajivshah.com/rldemo/)
1. [How to use Q Learning in Video Games Easily](https://github.com/llSourcell/q_learning_demo)
1. [K-nearest](https://twitter.com/MaximilianLloyd/status/814942799351185408)
1. [The Infinite Drum Machine](https://aiexperiments.withgoogle.com/drum-machine/view/)
1. [Visualizing the perceptron training algorithm](https://kwichmann.github.io/ml_sandbox/perceptron/)
1. [A Deep Q Reinforcement Learning Demo](http://projects.rajivshah.com/rldemo/) :bowtie:
1. [How to use Q Learning in Video Games Easily](https://github.com/llSourcell/q_learning_demo) :rainbow: :bowtie:
1. [K-nearest](https://twitter.com/MaximilianLloyd/status/814942799351185408) :bowtie:
1. [The Infinite Drum Machine](https://aiexperiments.withgoogle.com/drum-machine/view/) :rainbow: :bowtie:
1. [Visualizing the perceptron training algorithm](https://kwichmann.github.io/ml_sandbox/perceptron/) :rainbow: :bowtie:

## Projects
1. [Bidirectional LSTM for IMDB sentiment classification](https://transcranial.github.io/keras-js/#/imdb-bidirectional-lstm)
1. [Land Lines](https://medium.com/@zachlieberman/land-lines-e1f88c745847#.1157xmhw8)
1. [nnvis - Topological Visualisation of a Convolutional Neural Network](http://terencebroad.com/convnetvis/vis.html)
1. [Bidirectional LSTM for IMDB sentiment classification](https://transcranial.github.io/keras-js/#/imdb-bidirectional-lstm) :sweat_smile:
1. [Land Lines](https://medium.com/@zachlieberman/land-lines-e1f88c745847#.1157xmhw8)
1. [nnvis - Topological Visualisation of a Convolutional Neural Network](http://terencebroad.com/convnetvis/vis.html) :rainbow: :bowtie:
1. [char-rnn A character level language model (a fancy text generator)](https://github.com/karpathy/char-rnn) :rainbow: :sweat_smile:


## Videos
* Reinforcement Learning
1. [Artificial Intelligence in Google's Dinosaur (English Sub)](https://www.youtube.com/watch?v=P7XHzqZjXQs)
1. [How to use Q Learning in Video Games Easily](https://www.youtube.com/watch?v=A5eihauRQvo&feature=youtu.be)
1. [Artificial Intelligence in Google's Dinosaur (English Sub)](https://www.youtube.com/watch?v=P7XHzqZjXQs) :bowtie:
1. [How to use Q Learning in Video Games Easily](https://www.youtube.com/watch?v=A5eihauRQvo&feature=youtu.be) :bowtie:
* Evolutionary Algorithms
1. [Evolving Swimming Soft-Bodied Creatures](https://www.youtube.com/watch?v=4ZqdvYrZ3ro)
1. [Harnessing evolutionary creativity: evolving soft-bodied animats in simulated physical environments](https://www.youtube.com/watch?v=CXTZHHQ7ZiQ&feature=youtu.be)
1. [Reproduce image with genetic algorithm](https://www.youtube.com/watch?v=iV-hah6xs2A)
1. [Evolving Swimming Soft-Bodied Creatures](https://www.youtube.com/watch?v=4ZqdvYrZ3ro) :rainbow: :bowtie:
1. [Harnessing evolutionary creativity: evolving soft-bodied animats in simulated physical environments](https://www.youtube.com/watch?v=CXTZHHQ7ZiQ&feature=youtu.be) :rainbow: :bowtie:
1. [Reproduce image with genetic algorithm](https://www.youtube.com/watch?v=iV-hah6xs2A) :bowtie:

## Tools
1. [ConvNetJS - Javascript library for training Deep Learning models (Neural Networks) ](http://cs.stanford.edu/people/karpathy/convnetjs/)
1. [RecurrentJS - Deep Recurrent Neural Networks and LSTMs in Javascript](https://github.com/shiffman/recurrentjs)
1. [WORD2VEC](http://technobium.com/find-words-similarity-using-deeplearning4j-word2vec/)
1. [ConvNetJS - Javascript library for training Deep Learning models (Neural Networks) ](http://cs.stanford.edu/people/karpathy/convnetjs/) :sweat_smile:
1. [RecurrentJS - Deep Recurrent Neural Networks and LSTMs in Javascript](https://github.com/shiffman/recurrentjs) :sweat_smile:
1. [WORD2VEC](http://technobium.com/find-words-similarity-using-deeplearning4j-word2vec/) :sweat_smile:

### TensorFlow
1. [Projector](http://projector.tensorflow.org/)
1. [Magenta](https://github.com/tensorflow/magenta)
1. [Projector](http://projector.tensorflow.org/) :sweat_smile:
1. [Magenta](https://github.com/tensorflow/magenta) :rainbow:

### Tensorflow posts
1. [Big deep learning news: Google Tensorflow chooses Keras](http://www.fast.ai/2017/01/03/keras/)
1. [Simple end-to-end TensorFlow examples](http://bcomposes.com/2015/11/26/simple-end-to-end-tensorflow-examples/)

### t-SNE
1. [t-SNE](https://lvdmaaten.github.io/tsne/)
1. [t-SNE](https://scienceai.github.io/tsne-js/)
1. [t-SNE](https://lvdmaaten.github.io/tsne/) :sweat_smile:
1. [t-SNE](https://scienceai.github.io/tsne-js/) :sweat_smile:
1. [An illustrated introduction to the t-SNE algorithm](https://www.oreilly.com/learning/an-illustrated-introduction-to-the-t-sne-algorithm)
1. [Visualizing Data Using t-SNE](https://www.youtube.com/watch?v=RJVL80Gg3lA&list=UUtXKDgv1AVoG88PLl8nGXmw)
1. [Visualizing Data Using t-SNE](https://www.youtube.com/watch?v=RJVL80Gg3lA&list=UUtXKDgv1AVoG88PLl8nGXmw) :rainbow: